9 research outputs found

    Constitutively Active Galpha q and Galpha 13 Trigger Apoptosis through Different Pathways

    Get PDF
    We investigated the effect of expression of constitutively active Galpha mutants on cell survival. Transfection of constitutively active Galphaq and Galpha13 in two different cell lines caused condensation of genomic DNA and nuclear fragmentation. Endonuclease cleavage of genomic DNA was followed by labeling the DNA fragments and subsequent flow cytometric analysis. The observed cellular phenotype was identical to the phenotype displayed by cells undergoing apoptosis. To distinguish between the apoptosis-inducing ability of the two Galpha-subunits, the signaling pathways involved in this cellular function were investigated. Whereas Galpha q induced apoptosis via a protein kinaseC-dependent pathway, Galpha13 caused programmed cell death through a pathway involving the activation of the small G-protein Rho. Both of the pathways leading to apoptosis were blocked by overexpression of bcl-2. In contrast to other apoptosis-inducing systems, expression of constitutively active Galphaq and Galpha13 triggered apoptosis in high serum as well as in defined medium

    Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro

    Get PDF
    An extract from whole oocytes of Xenopus laevis was shown to transcribe somatic-type 5S RNA genes approximately 100-fold more efficiently than oocyte-type 5S RNA genes. This preference was at least 10-fold greater than the preference seen upon microinjection of 5S RNA genes into oocyte nuclei or upon in vitro transcription in an oocyte nuclear extract. The approximately 100-fold transcriptional bias in favor of the somatic-type 5S RNA genes observed in vitro in the whole oocyte extract was similar to the transcriptional bias observed in developing Xenopus embryos. We also showed that in the whole oocyte extract, a promoter-binding protein required for 5S RNA gene transcription, TFIIIA, was bound both to the actively transcribed somatic-type 5S RNA gene and to the largely inactive oocyte-type 5S RNA genes. These findings suggest that the mechanism for the differential expression of 5S RNA genes during Xenopus development does not involve differential binding of TFIIIA to 5S RNA genes

    Overview of the Alliance for Cellular Signaling

    No full text
    The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells — B lymphocytes (the cells of the immune system) and cardiac myocytes — to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community

    Evidence for two apoptotic pathways in light-induced retinal degeneration

    No full text
    Excessive phototransduction signaling is thought to be involved in light-induced and inherited retinal degeneration. Using knockout mice with defects in rhodopsin shut-off and transducin signaling, we show that two different pathways of photoreceptor-cell apoptosis are induced by light. Bright light induces apoptosis that is independent of transducin and accompanied by induction of the transcription factor AP-1. By contrast, low light induces an apoptotic pathway that requires transducin. We also provide evidence that additional genetic factors regulate sensitivity to light-induced damage. Our use of defined mouse mutants resolves some of the complexity underlying the mechanisms that regulate susceptibility to retinal degeneration

    Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Get PDF
    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins
    corecore